Part one : the statistical analysis for geometric distribution the geometric distribution is one of the better known discrete probability distributions and has many useful applications 第一篇:幾何分布產品的統計分析幾何分布是離散型分布中最重要的分布之一,它在信息工程、電子工程、控制論及經濟學中有著重要的應用。
A discrete probability distribution named as distribution of exponential difference is presented in this paper , formula to calculate the most probable success number , mathematical expectation and variance are derived for this distribution , relationship between this distribution and geometric distribution is discussed , a application of this distribution in markovian chain is given 摘要本文提出了一個離散型概率分布:指數差分布,推導了該分布的最可能成功次數、數學期望和方差,探討了該分布與幾何分布的關系,給出了該分布在馬爾可夫鏈模型中的應用。
Its applications include in the fields of information engineering , electronics industry , theory of controls and economic , etc . for example , we use geometric distribution to describe the life distribution of runs of a species in transect surveys of plant populations and inventory demand distributions . in the theory of reliability , geometric distribution is one of the most important discrete probability distributions because of its loss of memory 在可靠性理論中,由于幾何分布的無記憶性,使得其是離散型壽命分布中最為重要的壽命分布之一,其相當于指數分布在連續型壽命分布中的地位,這正如程侃研究員在文獻[ 5 ]中所指出的“在離散壽命的情形,幾何分布起著連續情形下指數分布所起的作用”一樣。